Dehumidification >> Do-It-Yourself Flooded Basement Dehumidification

As a result, the heat released by water condensation will compensate water-evaporation provoked temperature decline and enhanced water evaporation. The total heat exchange area of 124 copper tubes in this experiment is 4.5 m2. To enhance the water productivity and heat efficiency, capillary tubing bundles were embedded in the copper tubes Do-It-Yourself Flooded Basement Dehumidification and function as built-in condensers. 

The capillary tubing used here has an inside diameter (ID) of 0.56 mm and outside diameter (OD) of 1.06 mm. Each copper tube contains three built-in capillary tubes, Do-It-Yourself Flooded Basement Dehumidification giving an overall heat exchange surface area of 1.2 m 2 . Figure 3-3 schematically shows the built-in capillary tubing bundle embedded in a copper casing. 

As shown in Figure 3-3, the feeding water formed a thin water film on the external surface of the built-in capillary tubing. Air was forced to flow in the interspacing of capillary tubing in a counter movement by a centrifugal air blower. The up-flowing dry air further contacted with water film, Do-It-Yourself Flooded Basement Dehumidification generating humidified air stream. 

The humidified air was then directed to the interior cavities of capillary tubing and moved downward. In that process, Do-It-Yourself Flooded Basement Dehumidification water condensed at the interior cavities of capillary tubing upon cooling and capillary condensation. The purified produced water was collected at the bottom of air/water outlet. 3.2 Chemicals and equipment Chemicals used in this study include NaCl (ACS, >99%), cation standard (3600 ppm), anion standard (5000 ppm). 

Coal bed methane produced water samples were taken from the local disposal site of San Juan Basin of New Mexico State. The produced water contains 19792.8 mg/L total dissolved solid, 99.6 mg/L total suspended particulates Do-It-Yourself Flooded Basement Dehumidification and 470.2 mg/L total organic carbon. A water bath (17L, Polystat) was used to heat salty water and produced water to desirable temperatures. 

The variable Autotransformer (Type: 3PN1010, Staco Energy Products CO.) and centrifugal blower (Cole-Parmer) were used for water and air delivery. 3.3 Analysis Ion concentration of both feed Do-It-Yourself Flooded Basement Dehumidification and purified water samples were analyzed by ion chromatograph (IC, DX-120, Dionex). All water samples were filtrated by sterilizing filters (0.2 m, Fisher) to remove suspended particulates floating oil. 

Water samples were diluted to desirable concentrations (~50 mg/L) before manually injected into the IC for cation and anion analysis. A dynamic light scattering particle analyzer (Nanotrac NPA 150) was used for Do-It-Yourself Flooded Basement Dehumidification study of particle size distribution of the produced water. Concentrations of dissolved organics were represented by the TOC (Total Organic Carbon) and analyzed by a TOC analyzer (Shimadzu, TOC-V). 

Metal ions Do-It-Yourself Flooded Basement Dehumidification were analyzed by the flame atomic absorption (Varian Model 110). Water productivity of the humidification-dehumidification process was investigated with the two condensers: (1) copper tubing condenser and (2) built-in capillary bundles. Few experiments were carried out to test the performance of these two separation column with different condensers such as productivity, water recovery and heat efficiency. 

Compare with two separation column, the one with high productivity, Do-It-Yourself Flooded Basement Dehumidification high water recovery and high heat efficiency is suitable for oil filed use. 4.1 Copper tubing condenser Water purification by the HD process with copper tubing condenser was tested under certain conditions and water recovery at different operation parameters was investigated. 

The influence of feed water temperature, Do-It-Yourself Flooded Basement Dehumidification flow rate of inlet water and flow rate of inlet air were investigated. (1) The effect of carrying air flow rate test: this group test was made at constant feed water temperature of 80 ºC and flow rate of 20 ml/min . The carrying air flow rate was varied from 1250 LPH (liter per hour) to 1500 LPH and to 2500LPH. 

(2) The effect of feed water temperature test: the flow rate of feed water and carrying air were set at 20 ml/min Do-It-Yourself Flooded Basement Dehumidification and 1250 LPH respectively. Feed water was heated up to 60 ºC, 70 ºC and 80 ºC for three separate tests. The effect of feed water flow rate test: the effect of feed water flow rate test were tested at constant feed water temperature of 80 ºC and carrying air flow rate of 1250 LPH. 

Feed water flow rate was set at 20 ml/min, 27 ml/min and 32 ml/min respectively. 0.1 mol/L NaCl solution was used for all the testes. It was observed that the system needed about 4 hours to warm up. Thus, Do-It-Yourself Flooded Basement Dehumidification the first water sample was collected after starting the test for at least four hours. Then water samples were collected every three hours and water chemistry was analyzed. 

Each separation test was running for over 12 hours at constant room temperature until three consecutive water samples gave the same water recovery: an indication of stabilized operation. Water productivity, Do-It-Yourself Flooded Basement Dehumidification water recovery, ion remove efficiency and organic remove efficiency are four general parameters to test the quality of the water purify unit. 

Water productivity (WP) is defined by following equation, Do-It-Yourself Flooded Basement Dehumidification where Qw is the amount of water collected from a dehumidifier in the time period ∆t, which Qw and ∆t are expressed as kg and hour respectively. A is the effective humidification dehumidification area, m2 . In copper tube condenser test, the area is 4.5 m2 , which is the overall heat exchange surface area of the unit. 

Water recovery is defined as the ratio of purified water quantity to feed water quantity. Figure 4-1, 4-2 and 4-3 show the effects of operation parameters on water productivity Do-It-Yourself Flooded Basement Dehumidification and water recovery. Figure 4-1 reveals the influence of carrying air flow rate on water productivity and water recovery at feed water temperature of 80 ºC and flow rate of 20 ml/min. 

The purified water productivity decreased from 0.0194 kg/(h.m2 ) to 0.0159 kg/(h.m2 ) with carrying air flow rate increasing from 1250 LPH to 2500 LPH. Water recovery decreased from 7.3% to 6.0%. The productivity Do-It-Yourself Flooded Basement Dehumidification and water recovery decreasing is explained by large amount of cool carrying air entering the system. 

Dry carrying air was driven into the separator column at room temperature (25 ºC) which is remarkable different from feed water temperature (80 ºC). As the feed water mix with cool air, the temperature of the system decreased, Do-It-Yourself Flooded Basement Dehumidification resulting in a decline of water evaporation. Also, increasing dry air flow rate decreased the humidity at the top of humidifier which resulted in a decline in water productivity. 

Figure 4-2 and Figure 4-3 give the water productivity as a function of feed water temperature Do-It-Yourself Flooded Basement Dehumidification and flow rate. The decline of water recovery with increase of feed water flow rate suggests that the efficiency of productivity decreased with increase of feed water flow rate.

Desiccant Vs Mechanical Dehumidification

System description and operation principle Various low-temperature desalination units have been constructed base on the principle of humidification-dehumidification. The basic principle of all these techniques is to convert salt water to humidified air and Dehumidification Desiccant Vs Mechanical Dehumidification then condense the water vapo  read more..

How To Do Radon Testing

REGIONAL RADON TRAINING CENTERS (RRTCS)The EPA supports four Regional Radon Training Centers. Each RRTC is either an individual university or a consortium of universities that offer a variety of radon-related training courses. The EPA strongly encourages participants to be trained in all aspects of   read more..

How To Stop Animals From Digging Up Flower Beds

Direct control assistance is implemented when the problem cannot effectively be resolved through technical assistance, and when Cooperative Agreements provide for direct control assistance. The initial investigation defines the nature and history of the problem, extent of damage, and the species res  read more..

What Are The Dangers Of Sewage Backups

Use of root remover products - A number of root remover products are available commercially. Be sure to follow all of the manufacturer's instructions. Although these products may not completely eliminate the growth, they may increase the interval between Sewage Cleanup What Are The Dangers Of Sewage Backups needed rodding. 3. Sewer pipe   read more..

Mold Cause Problems With Allergies

Though disseminated coccidioidomycosis is uncommon, and symptomatic coccidioidal pneumonia usually resolves without therapy, many of these patients are very ill for weeks to months. Galgiani reported that a group of college students in Tucson who had coccidioidomycosis required an average of six cli  read more..

How To Remove Black Mold From Shower Walls

Molds are microscopic organisms that live on plant or animal matter. They aid in the break down of dead material and recycle nutrients in the environment. Present virtually everywhere, they can be found growing on organic material such as soil, foods, and plant matter. In order to reproduce, mo  read more..

Lead Paint Exposure To Iron Workers

Field measurements using a tape measure of 12 of the cuts revealed that the paint was stripped back an average of 1.15 (range of 0.5 to 4.0 inches) inches from the cut line (based on 69 measurements taken). After hot cutting, Lead Paint Removal Lead Paint Exposure To Iron Workers burned paint provided visual evidence that stripping was insuffi  read more..

How To Fix A Flooded Basement

Pumping Out a Flooded Basement If your basement is flooded, don’t rush to pump it out. Water in the ground outside your house is pushing against the outside of your basement walls, and the water inside is pushing right back. If you drain your basement too quickly, the pressure outside the walls wil  read more..

Animals digging in my yard

When it's obvious that your lawn has sustained some kind of animal damage whether it's creating mounds, tunneling or just plain digging. In order to correct the problem first you must identify the kind of animal that is created it. Depending on which part of the country you live in might at le  read more..

Asbestos Removal Courses In Wisconsin

"Category II nonfriable" is defined as "any material, excluding category I nonfriable, containing ... asbestos ... that ... cannot be crumbled ... to powder by hand pressure." This includes rigid exterior siding and boards by the trade name "transite". Category II Asbestos Abatement Asbestos Removal Courses In Wisconsin may not   read more..