Dehumidification >> Do-It-Yourself Flooded Basement Dehumidification

As a result, the heat released by water condensation will compensate water-evaporation provoked temperature decline and enhanced water evaporation. The total heat exchange area of 124 copper tubes in this experiment is 4.5 m2. To enhance the water productivity and heat efficiency, capillary tubing bundles were embedded in the copper tubes Do-It-Yourself Flooded Basement Dehumidification and function as built-in condensers. 

The capillary tubing used here has an inside diameter (ID) of 0.56 mm and outside diameter (OD) of 1.06 mm. Each copper tube contains three built-in capillary tubes, Do-It-Yourself Flooded Basement Dehumidification giving an overall heat exchange surface area of 1.2 m 2 . Figure 3-3 schematically shows the built-in capillary tubing bundle embedded in a copper casing. 

As shown in Figure 3-3, the feeding water formed a thin water film on the external surface of the built-in capillary tubing. Air was forced to flow in the interspacing of capillary tubing in a counter movement by a centrifugal air blower. The up-flowing dry air further contacted with water film, Do-It-Yourself Flooded Basement Dehumidification generating humidified air stream. 

The humidified air was then directed to the interior cavities of capillary tubing and moved downward. In that process, Do-It-Yourself Flooded Basement Dehumidification water condensed at the interior cavities of capillary tubing upon cooling and capillary condensation. The purified produced water was collected at the bottom of air/water outlet. 3.2 Chemicals and equipment Chemicals used in this study include NaCl (ACS, >99%), cation standard (3600 ppm), anion standard (5000 ppm). 

Coal bed methane produced water samples were taken from the local disposal site of San Juan Basin of New Mexico State. The produced water contains 19792.8 mg/L total dissolved solid, 99.6 mg/L total suspended particulates Do-It-Yourself Flooded Basement Dehumidification and 470.2 mg/L total organic carbon. A water bath (17L, Polystat) was used to heat salty water and produced water to desirable temperatures. 

The variable Autotransformer (Type: 3PN1010, Staco Energy Products CO.) and centrifugal blower (Cole-Parmer) were used for water and air delivery. 3.3 Analysis Ion concentration of both feed Do-It-Yourself Flooded Basement Dehumidification and purified water samples were analyzed by ion chromatograph (IC, DX-120, Dionex). All water samples were filtrated by sterilizing filters (0.2 m, Fisher) to remove suspended particulates floating oil. 

Water samples were diluted to desirable concentrations (~50 mg/L) before manually injected into the IC for cation and anion analysis. A dynamic light scattering particle analyzer (Nanotrac NPA 150) was used for Do-It-Yourself Flooded Basement Dehumidification study of particle size distribution of the produced water. Concentrations of dissolved organics were represented by the TOC (Total Organic Carbon) and analyzed by a TOC analyzer (Shimadzu, TOC-V). 

Metal ions Do-It-Yourself Flooded Basement Dehumidification were analyzed by the flame atomic absorption (Varian Model 110). Water productivity of the humidification-dehumidification process was investigated with the two condensers: (1) copper tubing condenser and (2) built-in capillary bundles. Few experiments were carried out to test the performance of these two separation column with different condensers such as productivity, water recovery and heat efficiency. 

Compare with two separation column, the one with high productivity, Do-It-Yourself Flooded Basement Dehumidification high water recovery and high heat efficiency is suitable for oil filed use. 4.1 Copper tubing condenser Water purification by the HD process with copper tubing condenser was tested under certain conditions and water recovery at different operation parameters was investigated. 

The influence of feed water temperature, Do-It-Yourself Flooded Basement Dehumidification flow rate of inlet water and flow rate of inlet air were investigated. (1) The effect of carrying air flow rate test: this group test was made at constant feed water temperature of 80 ºC and flow rate of 20 ml/min . The carrying air flow rate was varied from 1250 LPH (liter per hour) to 1500 LPH and to 2500LPH. 

(2) The effect of feed water temperature test: the flow rate of feed water and carrying air were set at 20 ml/min Do-It-Yourself Flooded Basement Dehumidification and 1250 LPH respectively. Feed water was heated up to 60 ºC, 70 ºC and 80 ºC for three separate tests. The effect of feed water flow rate test: the effect of feed water flow rate test were tested at constant feed water temperature of 80 ºC and carrying air flow rate of 1250 LPH. 

Feed water flow rate was set at 20 ml/min, 27 ml/min and 32 ml/min respectively. 0.1 mol/L NaCl solution was used for all the testes. It was observed that the system needed about 4 hours to warm up. Thus, Do-It-Yourself Flooded Basement Dehumidification the first water sample was collected after starting the test for at least four hours. Then water samples were collected every three hours and water chemistry was analyzed. 

Each separation test was running for over 12 hours at constant room temperature until three consecutive water samples gave the same water recovery: an indication of stabilized operation. Water productivity, Do-It-Yourself Flooded Basement Dehumidification water recovery, ion remove efficiency and organic remove efficiency are four general parameters to test the quality of the water purify unit. 

Water productivity (WP) is defined by following equation, Do-It-Yourself Flooded Basement Dehumidification where Qw is the amount of water collected from a dehumidifier in the time period ∆t, which Qw and ∆t are expressed as kg and hour respectively. A is the effective humidification dehumidification area, m2 . In copper tube condenser test, the area is 4.5 m2 , which is the overall heat exchange surface area of the unit. 

Water recovery is defined as the ratio of purified water quantity to feed water quantity. Figure 4-1, 4-2 and 4-3 show the effects of operation parameters on water productivity Do-It-Yourself Flooded Basement Dehumidification and water recovery. Figure 4-1 reveals the influence of carrying air flow rate on water productivity and water recovery at feed water temperature of 80 ºC and flow rate of 20 ml/min. 

The purified water productivity decreased from 0.0194 kg/(h.m2 ) to 0.0159 kg/(h.m2 ) with carrying air flow rate increasing from 1250 LPH to 2500 LPH. Water recovery decreased from 7.3% to 6.0%. The productivity Do-It-Yourself Flooded Basement Dehumidification and water recovery decreasing is explained by large amount of cool carrying air entering the system. 

Dry carrying air was driven into the separator column at room temperature (25 ºC) which is remarkable different from feed water temperature (80 ºC). As the feed water mix with cool air, the temperature of the system decreased, Do-It-Yourself Flooded Basement Dehumidification resulting in a decline of water evaporation. Also, increasing dry air flow rate decreased the humidity at the top of humidifier which resulted in a decline in water productivity. 

Figure 4-2 and Figure 4-3 give the water productivity as a function of feed water temperature Do-It-Yourself Flooded Basement Dehumidification and flow rate. The decline of water recovery with increase of feed water flow rate suggests that the efficiency of productivity decreased with increase of feed water flow rate.

The Typical Cost Of Tree Removal

Tornado Debris: Damage from tornadoes is caused by high-velocity rotating winds. The severity of the damage depends on the size of the tornado funnel and the length of time the funnel touches the ground. Damage is generally confined to a narrow path extending up to half a mile wide and Debris Removal The Typical Cost Of Tree Removal&nbs  read more..

How To Remove Asbestos Paint From A Ceiling

Treat at least two different areas of each phase in this fashion. Choose representative areas of the sample. It may be useful to select particular areas or fibers for analysis. This is useful to identify asbestos in severely in homogeneous Asbestos Abatement How To Remove Asbestos Paint From A Ceiling samples. 

  read more..

What Are Tsunamis

Introduction The [state] Geological Survey (CGS) provides geologic and seismic expertise to the public, other State government offices, such as the Governor's Office of Emergency Services (OES), and local government agencies (cities and counties). With the December 26, 2004 magnitude 9.0 earthquake   read more..

Ceiling Leak Covered By Home Insurance

Advisory Base Flood Elevations The Katrina Recovery Maps (see Figure 1) include the following information: Pre-Katrina aerial photographs (as a base map) Approximate Katrina surge inundation limit (shaded area) ABFE contours (ft NGVD) Predicted inland limit Structural Drying Ceiling Leak Covered By Home Insurance of damaging wave effects du  read more..

Mold Mitigation

These Structural Drying Mold Mitigation tracks are traits of Douglas-fir, pines, spruces and larches and are readily visible to your naked eyes, or under a low power magnifier on the end grains of planks and logs. In ponderosas, white and sugar pines, resin tracks are obviously visible as thin, brown stripes on the surfa  read more..

How Does A Radon Test Work

The meanings of these terms apply specifically to the RPP. The specialized definitions noted here are used in place of those found in standard dictionaries.Accepted application: An Application that has been entered into the Program database. Acceptance date: The Radon Mitigation How Does A Radon Test Work date on which EPA comp  read more..

Ceiling Leak Repair From Frozen Pipe

The first drying phase can be modeled by the normal diffusion equation (Equation 2) for which analytic solutions can be found in the literature (e.g., Baehr and Stephan 2003; Hens 2007; and Tautz 1971). The second drying phase is Structural Drying Ceiling Leak Repair From Frozen Pipe assumed to start at critical moisture content.  <  read more..

Information About Lead Paint Safety

We asked about making changes after attending the seminar, including testing paint for lead; using containment; using safer, less dusty, work methods; cleaning up with HEPA vacuums or wet methods; providing half-mask P-100 (HEPA) respirators; and providing blood lead testing. In nearly all these are  read more..

Remove A Sewage Smell From Inside A Home

What are Biosolids? They are nutrient-rich organic materials resulting from the treatment of domestic sewage in a treatment facility. When treated and processed, these residuals can be recycled and applied as fertilizer to improve and maintain productive soils and stimulate plant growth.2) What is t  read more..

How To Clean Up Raw Sewage In A Basement

Water from precipitation is not always the only source Basement Drying How To Clean Up Raw Sewage In A Basement of moisture. Urban development usually includes a centralized public water supply for the development. If the supply were through private domestic wells, then waterline leaks would be easy to identify. Simply turn off all the fauc  read more..