Dehumidification >> Dehumidify A Flooded Home Without A Dehumidifier

As illustrated in Figure 1, the evaporator (c) and the condenser (e) are the most critical components and dominate the system performance. The evaporator is fitted with a porous tower-packing material, in this case HD Q-PAC® structured media (Lantec Products, Inc., Agoura Hills, CA), Dehumidify A Flooded Home Without A Dehumidifier providing an ultra-high surface area. 

The hot seawater that is sprayed into the top of the evaporator forms a water film on the surface of the tower-packing material while gravity-flowing downward along the evaporator. The cold dry air is pumped into the evaporator at the bottom Dehumidify A Flooded Home Without A Dehumidifier and blown upward into and through the wetted tower-packing material. 

The direct contact between the hot seawater and the cold, dry, air leads to a heat and mass-transfer process between the water and the air. The result of this heat Dehumidify A Flooded Home Without A Dehumidifier and mass-transfer process is that a portion of the seawater evaporates and thus humidifies the air and the air temperature increases and the seawater temperature decreases. 

Taking advantage of solar radiation to preheat the seawater before it enters the evaporator increases the freshwater production. As both the water-evaporation Dehumidify A Flooded Home Without A Dehumidifier and air/humidity ratio increase with increasing temperature, higher seawater temperatures lead to increased freshwater production. 

The condenser has a structure similar to that of the evaporator, i.e., it is a tower fitted with a porous tower-packing material, Dehumidify A Flooded Home Without A Dehumidifier in this case also HD Q-PAC® structured media. The humid warm air in the evaporator is pumped into the bottom of the condenser and blown upward. The air then comes into direct contact with cold freshwater being sprayed into the top of the condenser. 

As a result of a second heat and mass-transfer process, opposite to that in the evaporator, Dehumidify A Flooded Home Without A Dehumidifier air temperature decreases and the water vapor condenses out from the air into the freshwater. The water condensate constitutes the freshwater production from the system. In the test project a one-dimensional control-volume-based theoretical approach was adopted to model the aforementioned heat and mass-transfer processes in the evaporator and the condenser, respectively. 

Applying the mass-conservation principle to the counter-current air/water two-phase flow, Dehumidify A Flooded Home Without A Dehumidifier the energy-conservation principle to the liquid film, and the energy-conservation principle to the air core led to a group of governing differential or algebraic equations for the respective transport processes. These equations were solved numerically to yield a detailed description of the working characteristics of the evaporator and condenser. 

Principal Findings and Significance A theoretical model has been developed in this project that is able to predict the net Dehumidify A Flooded Home Without A Dehumidifier freshwater production of an HDH system under different operating conditions. The model is also able to provide detailed description of the temperature and humidity-ratio distributions in the critical system components of evaporator and condenser. 

The accuracy of the model is now to be assessed by comparing the model predictions with experimental results from an ongoing experimental study. The experimental study is Dehumidify A Flooded Home Without A Dehumidifier currently supported by the 2009 U.S. Geological Survey State Water Resources Research Institute Program (WRRIP2009) and constitutes Phase II of the research program. 

Upon validation, the model will provide an essential tool for the effective design Dehumidify A Flooded Home Without A Dehumidifier and practical implementation of solar-energy-driven HDH seawater desalination systems. Sample results from the model are presented below. Variables are defined as follow: Qa represents the air flow in cubic feet per minute (CFM); 

Ta represents the air temperature in degrees Celsius ( °C); Qf represents the water flow in gallons per minute (GPM); Tf represents the water temperature in degrees Celsius (°C); "ω" indicates the air/humidity ratio; The subscript "evap" indicates Dehumidify A Flooded Home Without A Dehumidifier the evaporator; The subscript "cond" indicates the condenser; The subscript "in" indicates an inlet; 

The subscript "out" indicates an outlet; The subscript "prod" indicates production. Figures 2 and 3 show the predicted results for a representative evaporator whose tower packing material section is 0.25 m in diameter Dehumidify A Flooded Home Without A Dehumidifier and 1 m in height. The seawater-inlet temperature at the top of the evaporator is set to be 60°C and the air-inlet temperature at the bottom of the evaporator is 20°C. 

Figures 2(a) and 2(b) show the predicted variations of outlet temperatures of air and seawater versus the cold-air flow, respectively, for the three seawater flows of 1.0, 2.0, and 2.5 GPM. As expected, Dehumidify A Flooded Home Without A Dehumidifier the air- and seawater-outlet temperatures decrease with increasing cold-air flows and increase with increasing hot-seawater flows. 

Figure 3 shows the predicted air outlet humidity ratio as a function of the cold-air flow for the three seawater flows of 1.0, 2.0, and 2.5 GPM. Figures 4–7 show the predicted performance of a condenser that has identical dimensions Dehumidify A Flooded Home Without A Dehumidifier and structure as those of the evaporator. The air-inlet conditions at the bottom of the condenser correspond to the air-outlet conditions under an evaporator hot-seawater flow of 2.0 GPM. 

The freshwater inlet temperature at the top of the condenser is set to be 18°C. Figures 4(a) and 4(b) show the predicted outlet temperatures of air and freshwater as a function of the cold-air flow, respectively, Dehumidify A Flooded Home Without A Dehumidifier for the three freshwater flows of 0.6, 0.8, and 1.0 GPM. Figure 5 shows the predicted freshwater production as a function of the cold-air flow for the three freshwater flows of 0.6, 0.8, and 1.0 GPM. 

Figures 6(a) and 6(b) show the predicted outlet temperatures of air Dehumidify A Flooded Home Without A Dehumidifier and freshwater as a function of the freshwater flow, respectively, for the three cold-air flows of 60, 80, and 100 CFM. Figure 7 shows the predicted freshwater production as a function of the freshwater flow for the three cold-air flows of 60, 80, and 100 CFM. 

Desalination produces freshwater by removing dissolved minerals from seawater. The process has a long history as an effective means to meet agricultural, domestic, Dehumidify A Flooded Home Without A Dehumidifier and industrial freshwater needs in coastal areas. Technologically mature conventional desalination processes that have been widely used to produce freshwater at industrial-scale include multieffect distillation, multi-stage flashing, and reverse osmosis. 

Multi-effect distillation and multi-stage flashing are based on liquid-vapor phase-change Dehumidify A Flooded Home Without A Dehumidifier processes where seawater evaporates to water vapor either at atmospheric pressure by adding heat (multi-effect distillation) or at greatly reduced pressure by lowering water's boiling point (multi-stage flashing). This water vapor then condenses to yield freshwater—leaving any previously dissolved minerals as waste byproducts.

Odor Removal

In order to successfully remove smoke odor from your Fire Damage Odor Removal home there are a few things you could try. Hopefully this article will help these are just a few of the things that professionals try using common things around your home. Inside of your refrigerator you could take baking soda in an op  read more..

Start A Radon Testing Business

PROGRAM REQUIREMENTS FOR MEASUREMENT SERVICE PROVIDERS Adherence to all of the following requirements constitutes an EPA-conforming measurement.Participants involved in measurements for real estate transactions must also follow all procedures described in this section (Section 4.2), as well as those  read more..

How To Clean An Oven After Using A Fire Extinguish

In the early 1990s, a number of tests using direct measures of corrosion were developed. In addition to the CNET test, the cone corrosimeter and the traveling furnace tests were developed.An additional direct test was developed by the ASTM E 05.21.70 committee but it was eventually Smoke Damage How To Clean An Oven After Using A Fire Extinguish withdrawn.&n  read more..

Carpet Cleaning After A Flood

Wet bottom sediment was extracted overnight within a Soxhlet apparatus. Two aliquots of the sample extract were quantitatively injected into a polystyrene-divinylbenzene gel permeation column (GPC) andeluted with dichloromethane to remove sulfur and Water Extraction Carpet Cleaning After A Flood partially isolate the target analyt  read more..

Homeowner Asbestos Removal

Additional monitoring. Notwithstanding the provisions of paragraphs (d)(2)(ii) and (d)(4) of this section, the employer shall institute the exposure monitoring required under paragraphs (d)(2)(i) and (d)(3) of this section whenever there has been a change in the production, process, control &nb  read more..

Seal Sump Pumps Against Radon

Integrating device: A measurement device that produces an average numerical value over a period of time (Also called time integrating device).Listing: The act of granting a participant or additional participant service that has met EPA Program requirements a proficiency listing for either measuremen  read more..

Mold Removal From The House

What conditions may pose a problem & why What to do My name is:  Environmental Protection Program Specialist(Health & Safety Management),DAS Facilities Management , 860-713-5678 References used in this slide presentation: Dr. Harriet Burge EMLab P&K Chief Aerobiologist and Water Damage Mold Removal From The House  read more..

Tools For Restoring Water Damaged Electronics

The electrochemical process involves deposition of a suitable conductive seed layer inside the porous slug.This layer is electrically contacted and the slug is dipped in a doped monomer solution. Electric current is passed through the seed layer into the doped monomer solution stimulating the oxidat  read more..

Children Of Hoarders

Some animal hoarders have experienced traumatic childhoods leading to the inability to establish human relationships. Often this type of hoarders will cite the unconditional love of their animals as a reason why they need to be surrounded by them. Unfortunately, Hoarding Children Of Hoarders caring about animals  read more..

Remove Radon Gas From A Home

Biennial Measurement Exam The Measurement Exam was updated in July 1994 to include the latest in technological and procedural advancements. The biennial measurement exam will continue to be offered concurrently with the continuing education courses until August 15, 1997, and participants whose renew  read more..