Smoke Damage >> Effects Of Smoke On Electronic Equipment

In the United States, flammability requirements for electrical equipment are most commonly specified in the National Electrical Code (NEC) [12]. Specific testing requirements are then defined by testing laboratory standards (e.g., Underwriters Laboratories, Canadian Standards Association, etc.). Such standards are essentially voluntary until required by a building code,regulatory agency, Effects Of Smoke On Electronic Equipment or by the building owner as part of the bid process for construction of a facility. 

Such requirements are included in the specifications of various organizations such as the U.S. Nuclear Regulatory Commission (NRC), the Department of Defense, transportation authorities, and other large organizations. These specifications include requirements governing the allowable ignition, Effects Of Smoke On Electronic Equipment flame spread, and smoke production of materials, along with the design,installation, and use of electrical devices and systems.

In addition to direct regulation of the flammability and smoke generation properties of materials and Effects Of Smoke On Electronic Equipment equipment, there is also interest in indirect effects on the operational capabilities of personnel and equipment that may be exposed to a fire environment resulting from a fire. 

In NPP applications, Effects Of Smoke On Electronic Equipment operators must be able to perform appropriate safe shutdown operations and equipment may be critical to plant monitoring or to safe shutdown procedures so that both the direct effects of fire and indirect effects of fire generated smoke are of interest to ensure safe plant shutdown.

Considerable research has been conducted on the direct effects of fire in NPP applications [11].Recent studies have reviewed potential sub lethal effects of fire effluent [13]. A review of both direct and Effects Of Smoke On Electronic Equipment indirect effects of fire on electrical equipment [7] was also a resource for this report.

This chapter provides a review of Effects Of Smoke On Electronic Equipment studies of indirect fire effects on electrical equipment including studies specific to NPPs plus a significant base of research related to telecommunications equipment.2.1 Nuclear Power Plant Equipment 2.1.1 Susceptible Components in NPP Applications The earliest treatment of indirect fire damage to nuclear power facilities is a report prepared for the NRC by the NUS Corporation in 1985 [14]. 

The report evaluates the damaging aspects of fire environments, Effects Of Smoke On Electronic Equipment the susceptibility of various components to damage and the importance of those components to plant safety. Of particular interest was the impact of conditions associated with suppression activities (high humidity or liquid water effects).

Elevated temperatures below ignition temperatures of typical materials, and corrosion due to products from cable fire or Effects Of Smoke On Electronic Equipment gaseous suppression agents.Components were selected for evaluation based on the Fire Hazards Analysis (FHA) reports from four NPPs. Those components necessary to achieve and maintain safe-shutdown were evaluated based on Environmental Qualification (EQ) test reports and hydrogen burn tests. 

The EQ reports were used to judge resistance to elevated temperatures and high humidity or liquid water effects. The hydrogen burn tests and Effects Of Smoke On Electronic Equipment numerical simulations subjected a variety of electrical and electromechanical components to elevated temperatures, pressures and humidity caused by hydrogen fires in confined spaces. 

The hydrogen burn results indicated functionality of specific components and likely causes of failure. Based on the sources above and extensive use of engineering judgment, Effects Of Smoke On Electronic Equipment components were assigned ratings in a number of distinct categories describing damage ability and significance to plant operability. 

These ratings were weighted according to relative importance and Effects Of Smoke On Electronic Equipment combined into a single value to describe the overall hazard produced by exposing a given component to adverse environmental conditions. The primary result of these experiments is a relative ranking of components by both importance and susceptibility to fire damage. 

This information, shown in Table 1, is expressed for each component as a single number ranging from 0 to 1, Effects Of Smoke On Electronic Equipment with higher values indicating greater importance and risk of damage. Because the tests used clean burning hydrogen, the applicability of these results is limited with respect to smoke damage, but does provide guidance for identifying components that are both important to plant operation and sensitive to environmental conditions. 

It is also worth noting that this assessment applies almost exclusively to analog technology. Equipment Exposure to Full-Scale Fire Environments In response to reports of significant damage caused by so called "secondary environments”created by fires in NPP and other applications, Effects Of Smoke On Electronic Equipment Sandia National Laboratories (SNL) performed a number of cabinet burn tests aimed to better understand the safety issues associated with fires in NPPs. 

These environments include elevated temperatures and humidity and the presence of particulates and Effects Of Smoke On Electronic Equipment corrosive gases. The primary goal was to determine functionality of components when exposed to these environments. Data were also collected to characterize the environments to which those components were exposed. In addition to the burn tests, a small number of thermal failure and long term corrosion tests were included.

The components used in the tests were selected to represent the most easily damaged NPP electrical components, as identified in Ref. [14]. Some of these were powered during the test and subject to active monitoring, while others were unpowered and Effects Of Smoke On Electronic Equipment evaluated for functionality after the test was complete. 

In order to add conservatism and represent a wider variety of designs, Effects Of Smoke On Electronic Equipment some components were placed in non-standard orientations or modified (such as by removal of protective cases) to increase susceptibility to expected causes of failure.Five burn tests were performed, all using unqualified 1 polyvinyl chloride (PVC)-insulated cable as the fuel package. 

Room size and cabinet configuration were varied as was the arrangement of components. The fires lasted between 15 minutes and 40 minutes, Effects Of Smoke On Electronic Equipment and exhibited peak heat release rates between 185 kW and 995 kW. The fires were allowed to burn completely; no suppression was used. Component failures and degradation due to the room-scale burn test were as follows: Switches exhibited slight sensitivity to fire exposure. 

For some, a small number of voltage stresses (at most 15 Vac) were required to resume conduction while others had only slight increases in contact resistance. Fire size and Effects Of Smoke On Electronic Equipment exposure were seen as the most significant factors contributing to degradation. Overall, fire exposure did not impede normal operation of the switches tested. 

Relays (powered and unpowered) showed minor signs of corrosion after testing but did not suffer any loss of functionality. Meters did not suffer any loss of functionality. It is noted that these are generally well sealed, Effects Of Smoke On Electronic Equipment making them less susceptible to infiltration by products of combustion. Pen-based chart recorders suffered mechanical failure due to particulate deposition. 

There was no indication of electrical failure. Electronic counters did not fail during the burn test, Effects Of Smoke On Electronic Equipment despite significant particulate deposition. Some power supply and amplifiers responded adversely to increased temperatures, but were not affected by the products of combustion and functioned properly after the test. 

How To Clean A Meth Lab House

This document is designed to assist property owners, certified meth cleanup contractors, and state andlocal authorities with their efforts to reduce exposure to contamination from former drug labs ininhabitable properties as defined in KRS 224.01-410. The guidance is based on current informatio  read more..

Odor Removal

In order to successfully remove smoke odor from your Fire Damage Odor Removal home there are a few things you could try. Hopefully this article will help these are just a few of the things that professionals try using common things around your home. Inside of your refrigerator you could take baking soda in an op  read more..

Certifications For Asbestos Pipe Removal

Analytical Procedure: A portion of the sample filter is cleared and prepared for asbestos fiber counting by Phase Contrast Microscopy (PCM) at 400X. Commercial manufacturers and products mentioned in this method are for descriptive use only and do not constitute endorsements by USDOL-OSHA. Similar p  read more..

Flood Damage

After a flood has come through your area flooding your house, be patient and allow your Dehumidification Flood Damage walls ceilings and floors to thoroughly dry for at least a couple of weeks. If you try to repaint or hang wallpaper before proper drying is completed the mildew and mold will continue to grow. The mem  read more..

Wet Carpet From A Plumbing Leak

Common Indoor Moisture Sources Include: Flooding, inadequate maintenance and failure of building materials and systems Roof leaks Plumbing leaks Overflow from tubs, sinks or toilets Firewood stored indoors Humidifier use Inadequate venting of kitchen and Water Damage Wet Carpet From A Plumbing Leak bath humidity Improper venting  read more..

F5 Tornado Facts

As the cold pool elongates, repetitive storm growth on the downwind-moving, progressive part of the gust front comprises the derecho-producing convective system (red arc in bottom cross section of figure below, and Wind Damage F5 Tornado Facts on right side of plan view inset). 

Meanwh  read more..

How To Do Black Mold Removal

Mildew and molds are fungi - simple microscopic organisms that thrive anywhere there is a moist environment. Molds are a necessary part of the environment; without them, leaves would not decay and aspects of soil enrichment could not take place. It is their ability to destroy organic materials, howe  read more..

How To Remove A Heavy Smoke Smell

The official AQI value for particulate matter is derived exclusively from estimated or measured 24-hr average concentrations: this AQI for PM2.5 is reported by the media. PM levels for shorter averaging times in Table 3 are therefore not "official" AQI values, Smoke Damage How To Remove A Heavy Smoke Smell but have been mathematic  read more..

Storm Damage Trees Cleanup

A wind storm that blew through California on November 30 caused widespread damage to several areas of the Inyo National Forest and adjacent public lands. From Mount Whitney to Tioga Pass, thousands of trees were affected by the storm. Even with the monumental work accomplished in 2012, Wind Damage Storm Damage Trees Cleanup&nbs  read more..

How To Keep Ground Squirrels From Burrowing Under

Open season for hunting crows shall be from October 15 through November 30 and January 14 through March 31 of each year. No bag or possession limit. Entire state open.  Pigeons. 100.2(1) Pigeon season. There is a continuous open season for the taking of pigeons except the season for taking pige  read more..