Wind Damage >> Roof Damage Insurance Claim In North Carolina

The primary key to good shingle performance is the use of self-seal adhesive, coupled with correct application of fasteners (Smith, 1994). With an adequate number of fasteners, the pull-through resistance of the shingle will determine whether the loss of adhesive seal leads to the shingle being lost. Shingles were attached to roofs using Roof Damage Insurance Claim In North Carolina pneumatic staple guns in many cases. 

Once the wind managed to lift one layer of shingle tabs, the shingles acted as a sail, bending at the attachment and tearing it away. Often the staple Roof Damage Insurance Claim In North Carolina remained in place once the shingle was blown away. 

This would argue for using only nails for shingle attachment. Vognild et al. (1993) observed after Andrew that many fasteners Roof Damage Insurance Claim In North Carolina failed to engage the roof structure, or were randomly placed; these observations caused the authors to question the use of staples as fasteners. 

The lack of a high-wind-rated composition shingle is a serious problem. FEMA recommends that until Roof Damage Insurance Claim In North Carolina such a product is available, a water-resistant membrane - e.g., a hot-mopped underlayment - be installed to protect against water infiltration that could result from loss of cladding (FEMA, 1992). 

Although popular for their appearance and their longevity in high-humidity tropical areas, clay and concrete tile roofs did not perform well in hurricanes Andrew and Iniki. The primary and Roof Damage Insurance Claim In North Carolina most serious problem was failure of the bond between the mortar and tile. 

Because of the bonding problem, Smith (1994) questions whether mortar-set tile can safely be used at all in hurricane areas. A secondary problem was the low ductility of roofing tile. An extensive amount of clay and Roof Damage Insurance Claim In North Carolina concrete tile damage during Andrew was caused by flying debris, which included roof tiles among other types of debris. 

As a tile broke or became dislodged and injected into the wind stream, it was free to impact other tiles, Roof Damage Insurance Claim In North Carolina which were also injected into the wind stream, causing a cascading failure. It was not uncommon during Andrew for flying tiles not only to damage roofs, but also to break windows and cause personal injury (Smith, 1994). 

Because roof tiles (and attaching mortar) are so brittle and easily damaged, Smith suggests that one option is not to use roof tiles in hurricane areas. Instead, metal panels that simulate tile could be used, or Roof Damage Insurance Claim In North Carolina tiles could be developed with higher ductility for use in hurricane areas. 

Roof sheathing and Roof Damage Insurance Claim In North Carolina attachment HUD (1993) identified roof sheathing as a critical component that locks all other roof members together to form a structural system. Roof sheathing failure was a common problem during hurricanes Andrew and Iniki. 

During Andrew, almost 25% of houses assessed by HUD had loss or damage to one or more panels of roof sheathing, commonly starting in the gable end (HUD, 1993). Keith (1994) also observed that roof sheathing commonly failed in the region of the gable-end walls, and Roof Damage Insurance Claim In North Carolina in all cases he reported failure was due to improper fastenings. 

The SFBC requires nail spacing of between 6 inches o.c. and 12 inches o.c., depending on the location of the sheathing panel. But, Roof Damage Insurance Claim In North Carolina in sheathing found blown off, nails were spaced much farther apart, and fastening patterns were often erratic, ranging from 10 inches to 48 inches o.c. 

Further, it was not uncommon to find that staples and nails had been Roof Damage Insurance Claim In North Carolina positioned to miss the underlying framing member completely. Two types of roof sheathing material were common in South Florida: plywood and oriented strand board (OSB) sheathing. Keith (1994) notes that both performed equally well during Andrew. 

However, Kahn and Suaris disagree, saying that OSB performance was inferior to that of plywood, tending to disintegrate and/or curl at the edges under cyclic wind loading and/or Roof Damage Insurance Claim In North Carolina moisture penetration. In Hawaii, OSB is not commonly used, since pressure-treated wood is normally specified. 

When sheathing failure did occur during the case-study hurricanes, the usual reason was inadequate or Roof Damage Insurance Claim In North Carolina improper fastening (Cunningham, 1994; Keith, 1994). Roof sheathing stayed attached during Andrew and Iniki when properly attached. Cunningham (1994) recommends that a "high-wind" fastener schedule be used. 

This would consist of 45 nails, spaced 6 inches o.c., except 4 inches o.c. over the gable end, per each 4 x 8 sheet of plywood or OSB sheathing. This is a more rigorous attachment than the South Florida Build Code allowed: 6d common nails 12 inches o.c. along the interior of the panel, and Roof Damage Insurance Claim In North Carolina 6 inches along the gable end edge. 

Cunningham (1994) also recommends that 8d nails be used instead of 6d. Use of the larger nail doubles the withdrawal resistance of the connection, Roof Damage Insurance Claim In North Carolina according to tests conducted by Cunningham. Attachment methods can have an effect on the uplift resistance of sheathing. 

Riba, et al. (1994), noted after Andrew that some panels appeared to have pulled loose after fastener heads pulled through the panel. They hypothesized that this may have been due to Roof Damage Insurance Claim In North Carolina pneumatically driven nails that have only a partial nail head to accommodate the nail collating system on power-driven nail guns. 

When staples were used, cases were observed in which one leg of the staple missed the underlying truss or rafter. This reduced the strength of the connection by at least 50%. Some staples showed evidence that the staple was driven through the sheathing with excessive force, Roof Damage Insurance Claim In North Carolina leaving only a partial thickness of the sheathing to resist the wind. 

Power nail and staple drivers must be properly adjusted to avoid this problem. If a gable roof is chosen for home-building, Roof Damage Insurance Claim In North Carolina special care must be taken to strengthen the gable ends. Again, gable roofs are especially prone to damage from gable-end collapse, except when properly braced (Keith, 1994). 

Gable-end failure seems attributable primarily to poor or nonexistent bracing between gable-ends and Roof Damage Insurance Claim In North Carolina the rest of the structure. Gable-end failure was less common in Hawaii during Iniki than in south Florida during Andrew. One reason for this was that Iniki's wind speeds were generally less than Andrew. 

But another reason, according to Keith (1994), is that in Hawaii gable-ends are braced at the Roof Damage Insurance Claim In North Carolina top edge by diagonal and/or lateral bracing from the gable-end to the adjacent roof trusses. Another factor that mitigated the number of gable-end collapses during Iniki was the use of structural "outlookers" rather than the "ladder-type" framing used in south Florida. 

Structural outlookers use cantilevered 2x4s oriented flat-wise at roof sheathing joints. These outlookers extend outward from Roof Damage Insurance Claim In North Carolina the first interior truss or rafter over "dropped" gable-end wall framing. According to Keith (1994), such framing provides several advantages: 

1. Provides bracing of the roof framing at the plane of the roof deck during construction and Roof Damage Insurance Claim In North Carolina supplemental distribution of inward and outward forces into the roof "diaphragm" when gable-end walls are subjected to high winds. 2. Provides additional support of roof sheathing at overhanging rake ends. 

Increases stiffness and strength of cantilevered roof systems to provide added resistance to wind uplift forces, Roof Damage Insurance Claim In North Carolina concentrated loads from fascia framing, and foot traffic on the roof deck during construction and maintenance. 3. Increases roof diaphragm shear capacity at the ends of roof decking by creating a "blocked" roof diaphragm in these areas. 

These blocked areas have greater stiffness and shear load capacity, and Roof Damage Insurance Claim In North Carolina the blocking provides improved shear load transfer from gable-end wall framing. 4. Provides additional hold-down attachment points for roof sheathing panels at gable ends where uplift forces are the greatest.

Black Mold

Skin and Eye Protection Gloves are required to protect the skin from contact with mold allergens (and in some cases black mold toxins) Mold Remediation Black Mold and from potentially irritating cleaning solutions. Long gloves that extend to the middle of the forearm are recommended. The glove material shou  read more..

Removal_Tree Removal Insurance

If FEMA cannot deliver the needed technical expertise, the odds increase that costs and eligibility of debris removal will become problematic during the recovery phase of the disaster. Communities may be forced to evaluate and select debris removal and monitoring contractors without possessing the n  read more..

How To Conserve And Restore Old Paper

Few commercially available adhesives meet these criteria. Commercial library and wallpaper pastes may lose hold as they age, and they often contain harmful additives. Rubber cement and Document restoration How To Conserve And Restore Old Paper animal glues darken and stain. 

Several synthetic adhesives, such as "wh  read more..

How To Clean A Former Meth Lab Property

Cooking methamphetamine, (meth), results in the release of ingredient chemicals, the precursor drugs (pseudoephedrine or ephedrine), meth in vapor and particle form and other largely unknown byproducts Meth Lab Cleanup How To Clean A Former Meth Lab Property regardless of the cooking method used.Airborne contaminants are absorbed into soft   read more..

Remove Paint If You Dont Know If It Contains Lead

The standard also provides for a program of biological monitoring and medical surveillance for all employees exposed to levels of inorganic lead above the action level of 30 µg/m3 (TWA) for more than 30 days per year. The purpose of this document is to outline the medical surveillance provisions   read more..

Basement Drying

Recent radio and television hype about Mold Remediation Basement Drying many times creates an unusual and undue worry about contact to this mold. In the workplace many times the employees will a credit wide ranges of symptoms do to mold. These employees will accuse their made up illness even when there is no signs of ac  read more..

What Are Tsunamis

Introduction The [state] Geological Survey (CGS) provides geologic and seismic expertise to the public, other State government offices, such as the Governor's Office of Emergency Services (OES), and local government agencies (cities and counties). With the December 26, 2004 magnitude 9.0 earthquake   read more..

How Do I Clean Up After The Finished Basement Floo

Basement and Yard Water Problems
 Each year, the Water Resources Center receives dozens of phone calls and emails from people experiencing problems with unwanted water. Many of the calls start Basement Drying How Do I Clean Up After The Finished Basement Floo with "I think my house is built on a spring”. The symptoms may include w  read more..

How To Remove The Mildew Smell From A Flooded Base

Backhoes (power shovels) are available in a wide range of sizes, down to small "walk-behind” units capable of maneuvering in tight spaces like residential lots. Full foundation excavation with conventional backhoes is the base Basement Drying How To Remove The Mildew Smell From A Flooded Base case. Along with high cost, this method leads to very large im  read more..

Lead Abatement State Programs

Lead abatement is an activity designed to permanently eliminate lead-based paint hazards. Abatement is often ordered by a state or local government, and can involve specialized techniques not typical of renovation activities. EPA requires individuals and firms who perform abatement projects in pre-1  read more..